2.2.1代入消元法 课时教案湖北口中学 张衍生 教学内容:课本 例1 例2教学目的:1、知识点:(1)掌握用代入法解二元一次方程组的步骤;(2)熟练运用代入法解二元一次方程组。2、能力训练点:(1)培养学生的分析能力;(2)训练运算技巧,养成检验习惯。3、德育渗透点:消元、化未知为已知的数学思想。教学重点:使学生会用代入法解二元一次方程组。教学难点:灵活运用代入法的技巧。教学关键点:如何“消元”,把“二元”转化为“一元”。教学过程:一、复习引入1、 学生回答:二元一次方程、二元一次方程组以及它的解这三个概念。2、 已知方程 ,先用含 的代数式表示 ,再用含y的代数式表示x,并比较哪一种形式比较简单。3、 选择题:二元一次方程组 的解是( )A、 B、 C、 D、 4、如果已知一个二元一次方程组,应该怎样求出它的解呢?这节课我们一起来学习。二、讲授新课1、探究解法:利用上节课遇到的问题:要想求出1吨水费多少元,1立方米天然气费多少元,首先得利用我们上节课列出的方程组 先求水费和天然气费,才能求出1吨水费多少元,1立方米天然气费多少元。那怎样才能求出水费和天然气费呢?我们知道方程①和方程②中的x都表示小亮家用月份的水费,y都表示天然气费,因此方程②中的x,y分别与方程①中的x,y相同。于是我们从②式得 ③可以把③代入①式得 ④ 可得 ,把 代入③得 。所以此方程组的解是 于是1吨水费为2元,1立方米天然气费为1.7元。上面解二元一次方程组的方法,就是我们这节课要学习的方法——代入消元法。你能简单说说用代入法解二元一次方程组的基本思想吗?同桌同学讨论,找学生回答,教师指正并引导学生归纳出:设法消去一个未知数,把二元一次方程组转化为一元一次方程。2、例1 解方程组 分析:(1)观察上面的方程组,应该如何消元?(把②代入①)(2)把②代入①后可消掉哪个未知数?(y)得到关于 的一元一次方程,求出 (3)求出x后代入哪个方程中求y比较简单?(②)学生依次回答问题后,教师板书(略)学生口答检验。3、例2 解方程组 分析:引导学生把①变形为 ③ ,把③代入②消去x解得y,再把y的值代入③求得x,得出此方程组的解。学生尝试完成例2,教师巡视指导,规范书写过程,最后检验。(略)检验后,师生共同讨论:(1)由①得到③后,再代入①可以吗?(不可以)为什么?(得到的是恒等式,不能求解)(2)把 代入①或②可以求出x吗?(可以)代入③有什么好处?(运算简便)学生活动:根据例1、例2的解题过程,尝试总结什么叫代入消元法,用代入法解二元一次方程组的一般步骤,讨论后学生代表发言,之后,看课本21页,用几个字概括每个步骤。教师板书:(1)变形( )(2)代入消元(y)(3)解一元一次方程得(x)(4)把x代入 求解。4、练习:课本 (1)—(4)(找4名同学演板)三、巩固练习:练习册 1—5题四、小结:1、解二元一次方程组的思想:二元 一元。2、用代入法解二元一次方程组的步骤。五、作业:课本 1题课后简记: 板书设计:2.2.1代入消元法 例1 例2 思想: 步骤: 代入消元法一文由chinesejy教育网www.www.hxswjs.com搜集整理,版权归作者所有,转载请注明出处!