我要投稿
  • 您当前的位置:57365.com -> 教学教案 -> 数学教案 -> 高三数学教案 -> 教案内容
  • [ 收藏本页教案 ]
  • 复数的有关概念高中三年级教案

    教案作者:不详   教案来源:不详   教案栏目:高三数学教案    收藏本页

    教学目标

      (1)掌握复数的有关概念,如虚数、纯虚数、复数的实部与虚部、两复数相等、复平面、实轴、虚轴、共轭复数、共轭虚数的概念。
      (2)正确对复数进行分类,掌握数集之间的从属关系;
      (3)理解复数的几何意义,初步掌握复数集C和复平面内所有的点所成的集合之间的一一对应关系。
      (4)培养学生数形结合的数学思想,训练学生条理的逻辑思维能力.

     

    教学建议

    (一)教材分析

    1、知识结构

      本节首先介绍了复数的有关概念,然后指出复数相等的充要条件,接着介绍了有关复数的几何表示,最后指出了有关共轭复数的概念.

    2、重点、难点分析

      1)正确复数的实部与虚部

      对于复数 ,实部是 ,虚部是 .注意在说复数 时,一定有 ,否则,不能说实部是 ,虚部是 ,复数的实部和虚部都是实数。

      说明:对于复数的定义,特别要抓住 这一标准形式以及 是实数这一概念,这对于解有关复数的问题将有很大的帮助。

      (2)正确地对复数进行分类,弄清数集之间的关系

      分类要求不重复、不遗漏,同一级分类标准要统一。根据上述原则,复数集的分类如下:

    注意分清复数分类中的界限:

      ①设 ,则 为实数

      ② 为虚数

      ③

      ④ 为纯虚数

    3)不能乱用复数相等的条件解题.用复数相等的条件要注意:

      ①化为复数的标准形式

           ②实部、虚部中的字母为实数,即

    4)在讲复数集与复平面内所有点所成的集合一一对应时,要注意:

      ①任何一个复数 都可以由一个有序实数对( )唯一确定.这就是说,复数的实质是有序实数对.一些书上就是把实数对( )叫做复数的.

      ②复数 用复平面内的点Z( )表示.复平面内的点Z的坐标是( ),而不是(

  • 上一篇:复数的向量表示高中三年级教案
  • 下一篇:数的概念的发展高中三年级教案
  • 加入收藏】【告诉好友】【 】【打印此文】【回到顶部】【关闭窗口
    我要投稿   -   广告合作   -   关于本站   -   友情连接   -   网站地图   -   联系我们   -   版权声明   -   设为首页   -   加入收藏   -   网站留言
    Copyright © 2009 - 20012 www.www.hxswjs.com All Rights Reserved.57365.com 版权所有